遗传发育所第一遍在个人水平上开采单碱基编辑系统存在脱靶效应

人类遗传疾病和农作物农艺性状很多情况下是由基因组中的单个或少数核苷酸的突变引起的。因此,基因组中关键核苷酸变异的鉴定与定向修正是人类遗传疾病治疗及动植物育种的重要方向。基因组编辑工具单碱基编辑器的开发,为定向编辑和修正基因组中的关键核苷酸变异提供了重要工具,展现了其在遗传疾病治疗与动植物新品种培育等方面潜在的重大应用价值。单碱基编辑器主要分为两类,胞嘧啶单碱基编辑器与腺嘌呤单碱基编辑器,分别由胞嘧啶脱氨酶或改造的腺嘌呤脱氨酶与nCas9蛋白融合而来,对应地可在基因组中的靶向位点实现C”T或A”G的碱基编辑。目前,CBE与ABE已在多个物种中得到广泛应用。然而,对它们脱靶效应的检测还很不充分,数据主要来源于体外实验研究或者对利用生物信息学软件预测的有限的靶序列相似位点的检测,CBE与ABE在体内全基因组范围的脱靶效应还未得到评估。

高彩霞研究组首次在个体水平上发现单碱基编辑系统存在脱靶效应

中国科学家发现胞嘧啶单碱基编辑器存在全基因组范围的脱靶效应

近日,中国科学院遗传与发育生物学研究所高彩霞研究组在植物中对BE3(基于融合rAPOBEC1胞嘧啶脱氨酶的CBE系统)、HF1-BE3与ABE单碱基编辑系统的特异性进行了全基因组水平评估,首次在体内利用全基因组测序技术全面分析和比较了这三种单碱基编辑系统在基因组水平上的脱靶效应。该研究对经过不同单碱基编辑系统转化的56棵T0代水稻植株与21株对照植株进行全基因组测序。进一步序列统计分析发现,经过单碱基编辑系统处理后,基因组内的插入或删除突变的数量与对照组相比没有显著变化,但是BE3与HF1-BE3,无论是在有无sgRNA的情况下,均可在水稻基因组中造成大量的单核苷酸变异,且大部分为C”T类型的碱基突变。与经过农杆菌转化但不含任何碱基编辑系统的对照植株相比,BE3系统和HF1-BE3系统处理的植株在基因组范围内的C”T
SNVs分别增加了94.5%和231.9%,大约额外产生了98个C”T SNVs和242个C”T
SNVs。重要的是,与Cas-OFFinder软件预测结果比较发现,这些额外增加的C”T
SNVs绝大多数并不在现有软件可以预测到的脱靶位点。此外,这些C”T变异在染色体间均匀分布,但呈现出在转录活跃区富集的趋势。这些区域倾向于释放单链DNA为胞嘧啶脱氨酶提供合适的底物。研究还发现,与CBE系统相反,ABE系统表现出非常高的特异性。ABE处理的植株与对照植株在全基因组范围内的SNVs数量基本一致。

人类遗传疾病和农作物农艺性状很多情况下是由基因组中的单个或少数核苷酸的突变引起的。因此,基因组中关键核苷酸变异的鉴定与定向修正是人类遗传疾病治疗及动植物育种的重要方向。基因组编辑工具单碱基编辑器的开发,为定向编辑和修正基因组中的关键核苷酸变异提供了重要工具,展现了其在遗传疾病治疗与动植物新品种培育等方面潜在的重大应用价值。单碱基编辑器主要分为两类,胞嘧啶单碱基编辑器与腺嘌呤单碱基编辑器,分别由胞嘧啶脱氨酶或改造的腺嘌呤脱氨酶与nCas9蛋白融合而来,对应地可在基因组中的靶向位点实现C>T或A>G的碱基编辑。目前,CBE与ABE已在多个物种中得到了广泛应用。然而,对它们脱靶效应的检测还很不充分,数据主要来源于体外实验研究或者对利用生物信息学软件预测的有限的靶序列相似位点的检测,CBE与ABE在体内全基因组范围的脱靶效应还未得到评估。近日,中国科学院遗传与发育生物学研究所高彩霞研究组在植物中对BE3(基于融合rAPOBEC1胞嘧啶脱氨酶的CBE系统),HF1-BE3与ABE单碱基编辑系统的特异性进行了全基因组水平评估,首次在体内利用全基因组测序技术全面分析和比较了这三种单碱基编辑系统在基因组水平上的脱靶效应。该研究对经过不同单碱基编辑系统转化的56棵T0代水稻植株与21株对照植株进行全基因组测序。进一步序列统计分析发现,经过单碱基编辑系统处理后,基因组内的插入或删除突变的数量与对照组相比没有显著变化,但是BE3与HF1-BE3,无论是在有无sgRNA的情况下,均可在水稻基因组中造成大量的单核苷酸变异,且大部分为C>T类型的碱基突变。与经过农杆菌转化但不含任何碱基编辑系统的对照植株相比,BE3系统和HF1-BE3系统处理的植株在基因组范围内的C>T
SNVs分别增加了94.5%和231.9%,大约额外产生了98个C>T SNVs和242个C>T
SNVs。重要的是,与Cas-OFFinder软件预测结果比较发现,这些额外增加的C>T
SNVs绝大多数并不在现有软件可以预测到的脱靶位点。此外,这些C>T变异在染色体间均匀分布,但呈现出在转录活跃区富集的趋势。这些区域倾向于释放单链DNA为胞嘧啶脱氨酶提供合适的底物。研究还发现,与CBE系统相反,ABE系统表现出非常高的特异性。ABE处理的植株与对照植株在全基因组范围内的SNVs数量基本一致。

人类的遗传疾病与农作物农艺性状改变通常是由基因组中的单个或少数核苷酸的突变引起的。单碱基基因编辑技术为定向编辑基因组中的关键核苷酸变异提供了重要工具。中科院遗传与发育生物学研究所研究员高彩霞团队在水稻中对两种胞嘧啶编辑器
BE3和HF1-BE3,
以及一种腺嘌呤编辑器的特异性进行了全基因组水平评估,首次在体内利用全基因组测序技术全面分析和比较了单碱基编辑系统在基因组水平上的脱靶效应。相关研究成果于3月1日在线发表在《科学》杂志上。

综上,该研究表明现有BE3和HF1-BE3系统,而非ABE系统,可在植物体内造成难以预测的脱靶突变,因此,需要进一步优化提高其特异性。该工作创新性地利用相似遗传背景的克隆植物及全基因组重测序解决了以前大量异质细胞序列分析的复杂性。实验结果于2月28日在线发表在《科学》杂志(Science,DOI:
10.1126/science.aaw7166)。高彩霞研究组博士生靳帅、宗媛以及梁承志研究组工作人员高强为论文的共同第一作者,高彩霞为论文的通讯作者。遗传发育所研究员梁承志、王道文,中科院微生物研究所研究员邱金龙、四川农业大学博士钦鹏和明尼苏达大学博士张峰也参与了该研究。该研究得到国家自然科学基金委、国家重点研发计划与中科院项目经费的资助。

综上,该研究表明现有BE3和HF1-BE3系统,而非ABE系统,可在植物体内造成难以预测的脱靶突变,因此,需要进一步优化提高其特异性。该工作创新性地利用相似遗传背景的克隆植物及全基因组重测序解决了以前大量异质细胞序列分析的复杂性。实验结果于2019年2月28日在线发表在Science杂志(DOI:10.1126/science.aaw7166)。高彩霞研究组博士生靳帅、宗媛以及梁承志研究组工作人员高强为本文的共同第一作者,高彩霞研究员为本文的通讯作者。中科院遗传发育所梁承志研究员、王道文研究员,微生物所邱金龙研究员、四川农业大学钦鹏博士和明尼苏达大学张峰博士也参与该研究。该研究得到了国家自然科学基金委,国家重点研发计划与中国科学院项目经费的资助。

鉴定与定向修正基因组中关键的核苷酸变异,是人类遗传疾病治疗及动植物育种的重要研究方向。基于CRISPR系统的单碱基基因编辑技术是近年来取得的革命性技术之一,已广泛应用于基础研究、疾病治疗和作物遗传改良等各个方面。

图片 1

图:
实验流程与设计。比较BE3、HF1-BE3和ABE系统在全基因组范围内产生的C>T
SNVs的个数。BE3、HF1-BE3和ABE系统在基因组内各个功能区域内C>T
SNVs占总C>T SNVs的比例。比较BE3、HF1-BE3和ABE系统在高转录区内C>T
SNVs占总C>T SNVs的比例。

根据靶向碱基的不同,单碱基编辑器主要分为两类,胞嘧啶单碱基编辑器与腺嘌呤单碱基编辑器,分别由胞嘧啶脱氨酶或改造的腺嘌呤脱氨酶与nCas9蛋白融合而来,对应地可在基因组中的靶向位点实现C>T或A>G的碱基编辑。